A Luminescent Microporous Metal−Organic Framework with Highly Selective $CO₂$ Adsorption and Sensing of Nitro Explosives

Yun-Nan Gong, Yong-Liang Huang, Long Jiang, and Tong-Bu Lu*

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemis[try](#page-2-0) and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China

S Supporting Information

[AB](#page-2-0)STRACT: [A](#page-2-0) [luminescen](#page-2-0)t microporous metal−organic framework based on a π -electron-rich tricarboxylate ligand and an $In³⁺$ ion has been solvothermally obtained and characterized and exhibits highly selective $CO₂$ adsorption over CH_4 and N_2 gases and selective sensing of the nitro explosive 2,4,6-trinitrophenol.

Metal−organic frameworks (MOFs) have been extensively
researched during the past decade for their structural
diversity and notantial annisotions in see sterage and separation diversity and potential applications in gas storage and separation, magnetism, catalysis, and molecular sensing.¹ Recently, MOFs have emerged as excellent sorbents for $CO₂$ capture and storage because of their advantages such as high su[rf](#page-2-0)ace area, tunable pore size, and low crystal density, 2 particularly for the usage of selective capture of CO_2 from natural gases.³ Until now, only a few porous MOFs have shown [hi](#page-2-0)ghly selective adsorption of CO_2 over other gases such as CH_4 [an](#page-2-0)d $\mathrm{N}_2{}^4$ and the construction of viable CO_2 -capture MOF materials that can exhibit high CO_2 [s](#page-2-0)electivity over CH_4 and N_2 still remains a challenge. On the other hand, MOFs combining luminescence and permanent porosity have been of particular interest because of their potential applications as chemical sensors.⁵ The rapid sensing of nitro explosives present in soil and groundwater is very crucial for security screening, homeland [se](#page-2-0)curity, and environmental monitoring. The luminescence quenching method has proven to be a simple, sensitive, and convenient method for the sensing of such explosives.⁶

Herein, we report a luminescent microporous MOF, $(Me_2NH_2)_6[In_{10}(TTCA)_{12}]$ $(Me_2NH_2)_6[In_{10}(TTCA)_{12}]$ $(Me_2NH_2)_6[In_{10}(TTCA)_{12}]$ -24DMF-15H₂O (1; TTCA = triphenylene-2,6,10-tricarboxylate and DMF = N , N -dimethylformamide), that exhibits highly selective CO_2 adsorption over CH_4 and N_2 and selective sensing of the nitro explosive 2,4,6trinitrophenol (TNP).

Solvothermal reaction of triphenylene-2,6,10-tricarboxylic acid $(H_3TTCA)'$ with In(NO₃)₃·H₂O and hydrochloric acid in DMF and 1,4-dioxane at 170 °C for 72 h led to the formation of colorless block-[sh](#page-2-0)aped crystals of 1. The result of single X-ray structural analysis reveals that 1 crystallizes in the $R\overline{3}c$ space group, which adopts a $In_3(CO_2)_8$ cluster as a secondary building unit (SBU; see Figure S1a in the Supporting Information, SI). The $In_3(CO_2)_8$ SBU contains three In atoms, which are connected by two μ_2 -CO₂ and four μ_3 -CO₂ [groups, wit](#page-2-0)h an In1···In2 distance of 3.499 Å and an In1···In2···In1 angle of 167.56°. The In1 atom in the SBU is seven-coordinated with a distorted monocapped prismatic geometry, while the In2 atom is

six-coordinated with a distorted octahedral geometry (Figure 1a). In 1, each TTCA ligand links three $In_3(CO_2)_8$ SBUs to form

Figure 1. (a) Coordination environments of In1 and TTCA^{3−} in 1 (symmetry operations: A, $-y + \frac{5}{3}$, $-x + \frac{4}{3}$, $z - \frac{1}{6}$; B, $-y + \frac{5}{3}$, $x - y + \frac{4}{3}$, $z + \frac{1}{3}$; C, $y - \frac{1}{3}$, $x + \frac{1}{3}$, $-z + \frac{11}{6}$; D, $-x + 1$, $-y + 2$, $-z + 2$). (b) 3D microporous MOF of 1, showing the 1D channels along the c axis.

a three-dimensional (3D) framework with one-dimensional $(1D)$ channels along the c axis (Figure 1b); the size of the channel is 8×8 Å. Each In₃(CO₂)₈ SBU, linking eight TTCA ligands, can be regarded as an 8-connected node, and each TTCA ligand, connecting three $In_3(CO_2)_8$ SBUs, can be considered a 3connected node, so the overall structure can be simplified to a (3,8)-connected network with $\{4^2.6\}_6\{4^3\}_2\{4^5.6^{12}.8^{10}.10^{10}\}_3$ topology (Figure S1b in the SI). Among the reported nets based on trinuclear $SBUs$,⁸ the here-presented framework of 1 has not been observed so far.

Received: June 16, 2014 Published: August 29, 2014

The anionic framework of 1 is balanced by Me_2NH_2^+ cations decomposed from DMF.⁹ The pores of 1 are filled with disordered Me_2NH_2^+ , DMF, and H_2O molecules, and the solvent-accessible volume [ca](#page-2-0)lculated using $\textit{PLATOR}^{\text{10}}$ is 48.1%. Moreover, soaking 1 in methanol leads to the exchange of DMF and H_2O molecules with methanol to give 1'.

The results of thermogravimetric analysis (TGA) indicate that 1 readily lost DMF and $H₂O$ molecules in the temperature range of 30−250 °C, and desolvated 1 is stable up to 350 °C, while 1′ shows plateaus from 85 to 350 °C (Figure S2 in the SI). The results of powder X-ray diffraction (PXRD) measurements of 1 and 1′ demonstrate that the framework of 1 is stable in [me](#page-2-0)thanol (Figure S3 in the SI). The results of variable-temperature PXRD measurements demonstrate that the framework of 1 is stable up to 270 °C (Figur[e S](#page-2-0)4 in the SI).

In order to evaluate the porous features of 1, gas adsorption studies were conducted. As [sh](#page-2-0)own in Figure 2, N_2 adsorption

Figure 2. N_2 and H_2 adsorption isotherms of 1 at 77 K and CO_2 adsorption isotherm of 1 at 195 K.

measurement for 1 at 77 K and 1 atm revealed a reversible type I isotherm with saturated N_2 uptake of 247 cm³ g⁻¹ (STP), a characteristic of microporous materials, corresponding to a Brunauer−Emmett−Teller surface area of 726.8 m² \tilde{g}^{-1} . H₂ adsorption isotherm of 1 measured at 77 K demonstrated an uptake of $167 \text{ cm}^3 \text{ g}^{-1}$ (STP) at 1 atm. Furthermore, the adsorption isotherm of CO_2 also shows a typical type I curve, with the amounts of $CO₂$ uptake increasing abruptly at the beginning and then gradually reaching a plateau of 221 cm³ g⁻¹ (STP) at 195 K and 1 atm.

To further examine the gas storage capacity of 1, we also measured the $CO₂$, $CH₄$, and $N₂$ sorptions at near room temperature. Interestingly, 1 shows highly selective gas adsorption for CO_2 over CH_4 and N_2 at 273 and 298 K. The CO₂ uptakes at 1 atm reach 105.2 cm³ g⁻¹ (4.69 mmol g⁻¹, 20.6 wt %) at 273 K and 69.0 cm³ g⁻¹ (3.08 mmol g⁻¹, 13.5 wt %) at 298 K. For comparison, the CH₄ and N₂ uptakes are 30.2/18.3 and 7.0/4.3 $\text{cm}^3\text{ g}^{-1}$, respectively, under the same conditions (Figures 3a and S5 in the SI). Using the ideal absorbed solution theory,¹¹ the selectivity for a 50:50 CO_2/CH_4 mixture at 273 K and 1 atm is 24 (17 at 2[98](#page-2-0) K), and that for a 15:85 CO_2/N_2 mixtur[e a](#page-2-0)t 273 K and 1 atm is 221 (71 at 298 K; Figures 3b and S6 in the SI). To our knowledge, among numerous MOFs, only a few frameworks have shown the selectivities of $>$ 20 for CO₂/ CH₄ a[nd](#page-2-0) 200 for CO_2/N_2 at near room temperature.^{4a–c} The highly selective adsorption of CO_2 over CH_4 and N_2 suggests that 1 may be useful for methane purification and carbon cap[ture.](#page-2-0) The selective sorption of CO_2 rather than CH_4 and N_2 can be attributed to the quadrupole moment of CO_2 (−1.4 × 10⁻³⁹

Figure 3. (a) $CO₂$, $CH₄$, and N₂ uptake curves of 1 at 273 K. (b) Adsorption selectivities of CO_2/CH_4 and CO_2/N_2 for 1 at 273 K.

 $\rm cm^2)$, which generates specific interactions with the framework. 12 To better understand the interactions between $CO₂$ and the framework of 1, we calculated the isosteric heat Q_{st} of CO_2 [by](#page-2-0) fitting the 273 and 298 K isotherms to the virial equation, which is approximately 30.5 kJ mol[−]¹ at zero loading (Figures S7 and S8 in the SI), implying relatively strong interactions between $CO₂$ and the framework of 1.

The [p](#page-2-0)hotoluminescence spectrum of 1 exhibits strong emission at 505 nm at ambient temperature upon excitation at 410 nm (Figure S9 in the SI), with a quantum yield of 3%, which prompts us to explore its application for the detection of electron-withdrawing c[om](#page-2-0)pounds such as nitro explosives. Fluorescence quenching titrations were performed by adding 1 in different concentrations of methanol solutions of TNP. Figure S10 in the SI shows the quenching of luminescent intensities upon the addition of methanol solutions of TNP (0−2 mM). The maxim[um](#page-2-0) fluorescent intensity of 1 was reduced by 82.2% upon exposure to 2 mM methanol solutions of TNP [quenching percentage = $(I_0 - I)/I_0 \times 100\%$, where I_0 and I are fluorescent intensities of 1 before and after exposure to the nitroaromatic explosives]. Moreover, there is an obvious red shift (from 505 to 537 nm for the maximum fluorescent emission) for the spectra accompanied by quenching of the luminescent intensity upon the addition of a 2 mM methanol solution of TNP, which can be ascribed to the guest-dependent interactions between the MOF host framework and TNP (kinetic diameter ca. 7.2 Å). 6g,13 On the other hand, the luminescence responses of 1 to other nitro explosives, such as 2,4,6-trinitrotoluene (TNT), 2,4-d[initro](#page-2-0)toluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT), and nitrobenzene (NB), were ascertained by dispersing 1 in 2 mM nitro explosives in methanol (Figure 4). The maximum fluorescent intensity of 1 was reduced by 41.7, 62.1, 73.5, and 65.9% upon exposure to 2 mM methanol so[lu](#page-2-0)tions of TNT, 2,4-DNT, 2,6-

Figure 4. Luminescence changes of 1 by the addition of 2 mM methanol solutions of TNP, TNT, 2,4-DNT, 2,6-DNT, and NB.

DNT, and NB, respectively. The efficient quenching by nitro explosives can be attributed to a photoinduced electron transfer from the excited framework of 1 (as an electron donor) to the adsorbed electron acceptor (nitro explosives).^{14,6e} However, unlike TNP, the maximum fluorescent emission of 1 was hardly shifted by TNT, 2,4-DNT, 2,6-DNT, and NB, indicating that 1 could be regarded as a potential material for the selective detection of the nitro explosive of TNP.

In conclusion, a 3D luminescent microporous MOF based on triphenylene-2,6,10-tricarboxylate has been constructed. The compound exhibits highly selective gas adsorption for $CO₂$ over $CH₄$ and $N₂$, recommending the possible applications in purification of natural gas by CO_2/CH_4 separation and capturing CO2 from flue gases. Furthermore, it also shows selective sensing of the nitro explosive TNP, making it a promising sensing material for TNP monitoring.

■ ASSOCIATED CONTENT

S Supporting Information

Synthesis and characterization, gas sorption measurements, additional structure figures, adsorption isotherms, adsorption selectivity and luminescenct profiles, isosteric heat isotherms, TGA, PXRD, and X-ray crystallographic data in CIF format. This material is available free of charge via the Internet at http://pubs. acs.org.

■ AUTHOR INFORMATION

[Corres](http://pubs.acs.org)ponding Author

*E-mail: lutongbu@mail.sysu.edu.cn.

Notes

The aut[hors declare no competing](mailto:lutongbu@mail.sysu.edu.cn) financial interest.

■ ACKNOWLEDGMENTS

This work was financially supported by the 973 Program of China (Grants 2012CB821705 and 2014CB845602), NSFC (Grants 21331007 and 21121061), and NSF of Guangdong Province (Grant S2012030006240).

■ REFERENCES

(1) (a) Yun, R. R.; Lu, Z. Y.; Pan, Y.; You, X. Z.; Bai, J. F. Angew. Chem., Int. Ed. 2013, 52, 11282−11285. (b) Zhong, D. C.; Lu, T. B. Sci. China Chem. 2011, 54, 1395−1406. (c) Feng, D. W.; Gu, Z. Y.; Li, J. R.; Jiang, H. L.; Wei, Z. W.; Zhou, H. C. Angew. Chem., Int. Ed. 2012, 51, 10307− 10310. (d) Wanderley, M. M.; Wang, C.; Wu, C. D.; Lin, W. B. J. Am. Chem. Soc. 2012, 134, 9050−9053. (e) Falkowski, J. M.; Wang, C.; Liu, S.; Lin, W. B. Angew. Chem., Int. Ed. 2011, 50, 8674−8678. (f) Liu, T. F.;

Chen, Y. P.; Yakovenko, A. A.; Zhou, H. C. J. Am. Chem. Soc. 2012, 134, 17358−17361.

(2) (a) Henke, S.; Fischer, R. A. J. Am. Chem. Soc. 2011, 133, 2064− 2067. (b) Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T. H.; Long, J. R. Chem. Rev. 2012, 112, 724−781. (c) Xue, D. X.; Cairns, A. J.; Belmabkhout, Y.; Wojtas, L.; Liu, Y. L.; Alkordi, M. H.; Eddaoudi, M. J. Am. Chem. Soc. 2013, 135, 7660− 7667.

(3) (a) Bae, Y. S.; Snurr, R. Q. Angew. Chem., Int. Ed. 2011, 50, 11586− 11596. (b) Du, L. T.; Lu, Z. Y.; Zheng, K. Y.; Wang, J. Y.; Zheng, X.; Pan, Y.; You, X. Z.; Bai, J. F. J. Am. Chem. Soc. 2013, 135, 562−565.

(4) (a) Nugent, P.; Belmabkhout, Y.; Burd, S. D.; Cairns, A. J.; Luebke, R.; Forrest, K.; Pham, T.; Ma, S. Q.; Space, B.; Wojtas, L.; Eddaoudi, M.; Zaworotko, M. J. Nature 2013, 495, 80−84. (b) Xiang, S. C.; He, Y. B.; Zhang, Z. J.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B. L. Nat. Commun. 2012, 3, 954−962. (c) Nugent, P. S.; Rhodus, V. L.; Pham, T.; Forrest, K.; Wojtas, L.; Space, B.; Zaworotko, M. J. J. Am. Chem. Soc. 2013, 135, 10950−10953. (d) Lu, W. G.; Sculley, J. P.; Yuan, D. Q.; Krishna, R.; Wei, Z. W.; Zhou, H. C. Angew. Chem., Int. Ed. 2012, 51, 7480−7484. (e) Bloch, W. M.; Babarao, R.; Hill, M. R.; Doonan, C. J.; Sumby, C. J. J. Am. Chem. Soc. 2013, 135, 10441−10448. (f) McDonald, T. M.; D'Alessandro, D. M.; Krishna, R.; Long, J. R. Chem. Sci. 2011, 2, 2022− 2028.

(5) (a) Harbuzaru, B. V.; Corma, A.; Rey, F.; Jorda, J. L.; Ananias, D.; ́ Carlos, L. D.; Rocha, J. Angew. Chem., Int. Ed. 2009, 48, 6476−6479. (b) Li, Y.; Zhang, S. S.; Song, D. T. Angew. Chem., Int. Ed. 2013, 52, 710− 713.

(6) (a) Lan, A. J.; Li, K. H.; Wu, H. H.; Olson, D. H.; Emge, T. J.; Ki, W.; Hong, M. C.; Li, J. Angew. Chem., Int. Ed. 2009, 48, 2334−2338. (b) Gole, B.; Bar, A. K.; Mukherjee, P. S. Chem. Commun. 2011, 47, 12137−12139. (c) Pramanik, S.; Zheng, C.; Zhang, X.; Emge, T. J.; Li, J. J. Am. Chem. Soc. 2011, 133, 4153−4155. (d) Peng, Y.; Zhang, A. J.; Dong, M.; Wang, Y. W. Chem. Commun. 2011, 47, 4505−4507. (e) Gong, Y. N.; Jiang, L.; Lu, T. B. Chem. Commun. 2013, 49, 11113− 11115. (f) Nagarkar, S. S.; Joarder, B.; Chaudhari, A. K.; Mukherjee, S.; Ghosh, S. K. Angew. Chem., Int. Ed. 2013, 52, 2881−2885. (g) Xue, Y. S.; He, Y. B.; Zhou, L.; Chen, F. J.; Xu, Y.; Du, H. B.; You, X. Z.; Chen, B. L. J. Mater. Chem. A 2013, 1, 4525−4530.

(7) Gong, Y. N.; Meng, M.; Zhong, D. C.; Huang, Y. L.; Jiang, L.; Lu, T. B. Chem. Commun. 2012, 48, 12002−12004.

(8) (a) Yang, E. C.; Liu, Z. Y.; Wang, X. G.; Batten, S. R.; Zhao, X. J. CrystEngComm 2008, 10, 1140−1143. (b) Gong, Y. N.; Lu, T. B. Chem. Commun. 2013, 49, 7711−7713.

(9) (a) An, J.; Rosi, N. L. J. Am. Chem. Soc. 2010, 132, 5578−5579. (b) Zheng, S. T.; Wu, T.; Irfanoglu, B.; Zuo, F.; Feng, P. Y.; Bu, X. H. Angew. Chem., Int. Ed. 2011, 50, 8034−8037.

(10) Spek, A. L. PLATON 99: A Multipurpose Crystallographic Tool; Utrecht University: Utrecht, The Netherlands, 1999.

(11) Bae, Y. S.; Mulfort, K. L.; Frost, H.; Ryan, P.; Punnathanam, S.; Broadbelt, L. J.; Hupp, J. T.; Snurr, R. Q. Langmuir 2008, 24, 8592− 8598.

(12) Huang, Y. L.; Gong, Y. N.; Jiang, L.; Lu, T. B. Chem. Commun. 2013, 49, 1753−1755.

(13) Sun, L. B.; Xing, H. Z.; Xu, J.; Liang, Z. Q.; Yu, J. H.; Xu, R. R. Dalton Trans. 2013, 42, 5508−5513.

(14) Zhang, C. Y.; Che, Y. K.; Zhang, Z. X.; Yang, X. M.; Zang, L. Chem. Commun. 2011, 47, 2336−2338.