Inorganic Chemistry

A Luminescent Microporous Metal–Organic Framework with Highly Selective CO₂ Adsorption and Sensing of Nitro Explosives

Yun-Nan Gong, Yong-Liang Huang, Long Jiang, and Tong-Bu Lu*

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China

Supporting Information

ABSTRACT: A luminescent microporous metal—organic framework based on a π -electron-rich tricarboxylate ligand and an In³⁺ ion has been solvothermally obtained and characterized and exhibits highly selective CO₂ adsorption over CH₄ and N₂ gases and selective sensing of the nitro explosive 2,4,6-trinitrophenol.

etal-organic frameworks (MOFs) have been extensively researched during the past decade for their structural diversity and potential applications in gas storage and separation, magnetism, catalysis, and molecular sensing.¹ Recently, MOFs have emerged as excellent sorbents for CO₂ capture and storage because of their advantages such as high surface area, tunable pore size, and low crystal density,² particularly for the usage of selective capture of CO₂ from natural gases.³ Until now, only a few porous MOFs have shown highly selective adsorption of CO_2 over other gases such as CH_4 and N_{24}^4 and the construction of viable CO_2 -capture MOF materials that can exhibit high CO_2 selectivity over CH₄ and N₂ still remains a challenge. On the other hand, MOFs combining luminescence and permanent porosity have been of particular interest because of their potential applications as chemical sensors.⁵ The rapid sensing of nitro explosives present in soil and groundwater is very crucial for security screening, homeland security, and environmental monitoring. The luminescence quenching method has proven to be a simple, sensitive, and convenient method for the sensing of such explosives.6

Herein, we report a luminescent microporous MOF, $(Me_2NH_2)_6[In_{10}(TTCA)_{12}]$ ·24DMF·15H₂O (1; TTCA = triphenylene-2,6,10-tricarboxylate and DMF = *N*,*N*-dimethylformamide), that exhibits highly selective CO₂ adsorption over CH₄ and N₂ and selective sensing of the nitro explosive 2,4,6trinitrophenol (TNP).

Solvothermal reaction of triphenylene-2,6,10-tricarboxylic acid $(H_3TTCA)^7$ with $In(NO_3)_3$ ·H₂O and hydrochloric acid in DMF and 1,4-dioxane at 170 °C for 72 h led to the formation of colorless block-shaped crystals of 1. The result of single X-ray structural analysis reveals that 1 crystallizes in the $R\overline{3}c$ space group, which adopts a $In_3(CO_2)_8$ cluster as a secondary building unit (SBU; see Figure S1a in the Supporting Information, SI). The $In_3(CO_2)_8$ SBU contains three In atoms, which are connected by two μ_2 -CO₂ and four μ_3 -CO₂ groups, with an In1…In2 distance of 3.499 Å and an In1…In2…In1 angle of 167.56°. The In1 atom in the SBU is seven-coordinated with a distorted monocapped prismatic geometry, while the In2 atom is

six-coordinated with a distorted octahedral geometry (Figure 1a). In 1, each TTCA ligand links three $In_3(CO_2)_8$ SBUs to form

Figure 1. (a) Coordination environments of In1 and TTCA³⁻ in 1 (symmetry operations: A, $-y + {}^{5}/_{3}$, $-x + {}^{4}/_{3}$, $z - {}^{1}/_{6}$; B, $-y + {}^{5}/_{3}$, $x - y + {}^{4}/_{3}$, $z + {}^{1}/_{3}$; C, $y - {}^{1}/_{3}$, $x + {}^{1}/_{3}$, $-z + {}^{11}/_{6}$; D, -x + 1, -y + 2, -z + 2). (b) 3D microporous MOF of 1, showing the 1D channels along the *c* axis.

a three-dimensional (3D) framework with one-dimensional (1D) channels along the *c* axis (Figure 1b); the size of the channel is 8×8 Å. Each $In_3(CO_2)_8$ SBU, linking eight TTCA ligands, can be regarded as an 8-connected node, and each TTCA ligand, connecting three $In_3(CO_2)_8$ SBUs, can be considered a 3-connected node, so the overall structure can be simplified to a (3,8)-connected network with $\{4^2.6\}_6\{4^3\}_2\{4^5.6^{12}.8^{10}.10^{10}\}_3$ topology (Figure S1b in the SI). Among the reported nets based on trinuclear SBUs,⁸ the here-presented framework of **1** has not been observed so far.

Received: June 16, 2014 Published: August 29, 2014

Inorganic Chemistry

The anionic framework of 1 is balanced by $Me_2NH_2^+$ cations decomposed from DMF.⁹ The pores of 1 are filled with disordered $Me_2NH_2^+$, DMF, and H_2O molecules, and the solvent-accessible volume calculated using *PLATON*¹⁰ is 48.1%. Moreover, soaking 1 in methanol leads to the exchange of DMF and H_2O molecules with methanol to give 1'.

The results of thermogravimetric analysis (TGA) indicate that 1 readily lost DMF and H_2O molecules in the temperature range of 30–250 °C, and desolvated 1 is stable up to 350 °C, while 1' shows plateaus from 85 to 350 °C (Figure S2 in the SI). The results of powder X-ray diffraction (PXRD) measurements of 1 and 1' demonstrate that the framework of 1 is stable in methanol (Figure S3 in the SI). The results of variable-temperature PXRD measurements demonstrate that the framework of 1 is stable up to 270 °C (Figure S4 in the SI).

In order to evaluate the porous features of 1, gas adsorption studies were conducted. As shown in Figure 2, N_2 adsorption

Figure 2. N_2 and H_2 adsorption isotherms of 1 at 77 K and CO_2 adsorption isotherm of 1 at 195 K.

measurement for 1 at 77 K and 1 atm revealed a reversible type I isotherm with saturated N₂ uptake of 247 cm³ g⁻¹ (STP), a characteristic of microporous materials, corresponding to a Brunauer–Emmett–Teller surface area of 726.8 m² g⁻¹. H₂ adsorption isotherm of 1 measured at 77 K demonstrated an uptake of 167 cm³ g⁻¹ (STP) at 1 atm. Furthermore, the adsorption isotherm of CO₂ also shows a typical type I curve, with the amounts of CO₂ uptake increasing abruptly at the beginning and then gradually reaching a plateau of 221 cm³ g⁻¹ (STP) at 195 K and 1 atm.

To further examine the gas storage capacity of 1, we also measured the CO2, CH4, and N2 sorptions at near room temperature. Interestingly, 1 shows highly selective gas adsorption for CO₂ over CH₄ and N₂ at 273 and 298 K. The CO_2 uptakes at 1 atm reach 105.2 cm³ g⁻¹ (4.69 mmol g⁻¹, 20.6 wt %) at 273 K and 69.0 cm³ g⁻¹ (3.08 mmol g⁻¹, 13.5 wt %) at 298 K. For comparison, the CH₄ and N₂ uptakes are 30.2/18.3 and 7.0/4.3 cm³ g⁻¹, respectively, under the same conditions (Figures 3a and S5 in the SI). Using the ideal absorbed solution theory,¹¹ the selectivity for a 50:50 CO₂/CH₄ mixture at 273 K and 1 atm is 24 (17 at 298 K), and that for a 15:85 CO_2/N_2 mixture at 273 K and 1 atm is 221 (71 at 298 K; Figures 3b and S6 in the SI). To our knowledge, among numerous MOFs, only a few frameworks have shown the selectivities of >20 for $CO_2/$ CH_4 and 200 for CO_2/N_2 at near room temperature. $^{4\mathrm{a-c}}$ The highly selective adsorption of CO₂ over CH₄ and N₂ suggests that 1 may be useful for methane purification and carbon capture. The selective sorption of CO₂ rather than CH₄ and N₂ can be attributed to the quadrupole moment of CO₂ (-1.4×10^{-39}

Figure 3. (a) CO_2 , CH_4 , and N_2 uptake curves of 1 at 273 K. (b) Adsorption selectivities of CO_2/CH_4 and CO_2/N_2 for 1 at 273 K.

cm²), which generates specific interactions with the framework.¹² To better understand the interactions between CO₂ and the framework of **1**, we calculated the isosteric heat Q_{st} of CO₂ by fitting the 273 and 298 K isotherms to the virial equation, which is approximately 30.5 kJ mol⁻¹ at zero loading (Figures S7 and S8 in the SI), implying relatively strong interactions between CO₂ and the framework of **1**.

The photoluminescence spectrum of 1 exhibits strong emission at 505 nm at ambient temperature upon excitation at 410 nm (Figure S9 in the SI), with a quantum yield of 3%, which prompts us to explore its application for the detection of electron-withdrawing compounds such as nitro explosives. Fluorescence quenching titrations were performed by adding 1 in different concentrations of methanol solutions of TNP. Figure S10 in the SI shows the quenching of luminescent intensities upon the addition of methanol solutions of TNP (0-2 mM). The maximum fluorescent intensity of 1 was reduced by 82.2% upon exposure to 2 mM methanol solutions of TNP [quenching percentage = $(I_0 - I)/I_0 \times 100\%$, where I_0 and I are fluorescent intensities of 1 before and after exposure to the nitroaromatic explosives]. Moreover, there is an obvious red shift (from 505 to 537 nm for the maximum fluorescent emission) for the spectra accompanied by quenching of the luminescent intensity upon the addition of a 2 mM methanol solution of TNP, which can be ascribed to the guest-dependent interactions between the MOF host framework and TNP (kinetic diameter ca. 7.2 Å). 6g,13 On the other hand, the luminescence responses of 1 to other nitro explosives, such as 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT), and nitrobenzene (NB), were ascertained by dispersing 1 in 2 mM nitro explosives in methanol (Figure 4). The maximum fluorescent intensity of 1 was reduced by 41.7, 62.1, 73.5, and 65.9% upon exposure to 2 mM methanol solutions of TNT, 2,4-DNT, 2,6-

Figure 4. Luminescence changes of 1 by the addition of 2 mM methanol solutions of TNP, TNT, 2,4-DNT, 2,6-DNT, and NB.

DNT, and NB, respectively. The efficient quenching by nitro explosives can be attributed to a photoinduced electron transfer from the excited framework of **1** (as an electron donor) to the adsorbed electron acceptor (nitro explosives).^{14,6e} However, unlike TNP, the maximum fluorescent emission of **1** was hardly shifted by TNT, 2,4-DNT, 2,6-DNT, and NB, indicating that **1** could be regarded as a potential material for the selective detection of the nitro explosive of TNP.

In conclusion, a 3D luminescent microporous MOF based on triphenylene-2,6,10-tricarboxylate has been constructed. The compound exhibits highly selective gas adsorption for CO_2 over CH_4 and N_2 , recommending the possible applications in purification of natural gas by CO_2/CH_4 separation and capturing CO_2 from flue gases. Furthermore, it also shows selective sensing of the nitro explosive TNP, making it a promising sensing material for TNP monitoring.

ASSOCIATED CONTENT

Supporting Information

Synthesis and characterization, gas sorption measurements, additional structure figures, adsorption isotherms, adsorption selectivity and luminescenct profiles, isosteric heat isotherms, TGA, PXRD, and X-ray crystallographic data in CIF format. This material is available free of charge via the Internet at http://pubs. acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: lutongbu@mail.sysu.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by the 973 Program of China (Grants 2012CB821705 and 2014CB845602), NSFC (Grants 21331007 and 21121061), and NSF of Guangdong Province (Grant S2012030006240).

REFERENCES

(1) (a) Yun, R. R.; Lu, Z. Y.; Pan, Y.; You, X. Z.; Bai, J. F. Angew. Chem., Int. Ed. **2013**, *52*, 11282–11285. (b) Zhong, D. C.; Lu, T. B. Sci. China Chem. **2011**, *54*, 1395–1406. (c) Feng, D. W.; Gu, Z. Y.; Li, J. R.; Jiang, H. L.; Wei, Z. W.; Zhou, H. C. Angew. Chem., Int. Ed. **2012**, *51*, 10307– 10310. (d) Wanderley, M. M.; Wang, C.; Wu, C. D.; Lin, W. B. J. Am. Chem. Soc. **2012**, *134*, 9050–9053. (e) Falkowski, J. M.; Wang, C.; Liu, S.; Lin, W. B. Angew. Chem., Int. Ed. **2011**, *50*, 8674–8678. (f) Liu, T. F.; Chen, Y. P.; Yakovenko, A. A.; Zhou, H. C. J. Am. Chem. Soc. 2012, 134, 17358–17361.

(2) (a) Henke, S.; Fischer, R. A. J. Am. Chem. Soc. **2011**, 133, 2064–2067. (b) Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T. H.; Long, J. R. Chem. Rev. **2012**, *112*, 724–781. (c) Xue, D. X.; Cairns, A. J.; Belmabkhout, Y.; Wojtas, L.; Liu, Y. L.; Alkordi, M. H.; Eddaoudi, M. J. Am. Chem. Soc. **2013**, 135, 7660–7667.

(3) (a) Bae, Y. S.; Snurr, R. Q. Angew. Chem., Int. Ed. **2011**, 50, 11586–11596. (b) Du, L. T.; Lu, Z. Y.; Zheng, K. Y.; Wang, J. Y.; Zheng, X.; Pan, Y.; You, X. Z.; Bai, J. F. J. Am. Chem. Soc. **2013**, 135, 562–565.

(4) (a) Nugent, P.; Belmabkhout, Y.; Burd, S. D.; Cairns, A. J.; Luebke, R.; Forrest, K.; Pham, T.; Ma, S. Q.; Space, B.; Wojtas, L.; Eddaoudi, M.; Zaworotko, M. J. *Nature* **2013**, 495, 80–84. (b) Xiang, S. C.; He, Y. B.; Zhang, Z. J.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B. L. *Nat. Commun.* **2012**, 3, 954–962. (c) Nugent, P. S.; Rhodus, V. L.; Pham, T.; Forrest, K.; Wojtas, L.; Space, B.; Zaworotko, M. J. *J. Am. Chem. Soc.* **2013**, 135, 10950–10953. (d) Lu, W. G.; Sculley, J. P.; Yuan, D. Q.; Krishna, R.; Wei, Z. W.; Zhou, H. C. *Angew. Chem., Int. Ed.* **2012**, 51, 7480–7484. (e) Bloch, W. M.; Babarao, R.; Hill, M. R.; Doonan, C. J.; Sumby, C. J. *J. Am. Chem. Soc.* **2013**, 135, 10441–10448. (f) McDonald, T. M.; D'Alessandro, D. M.; Krishna, R.; Long, J. R. *Chem. Sci.* **2011**, 2, 2022– 2028.

(5) (a) Harbuzaru, B. V.; Corma, A.; Rey, F.; Jordá, J. L.; Ananias, D.; Carlos, L. D.; Rocha, J. *Angew. Chem., Int. Ed.* **2009**, *48*, 6476–6479. (b) Li, Y.; Zhang, S. S.; Song, D. T. *Angew. Chem., Int. Ed.* **2013**, *52*, 710– 713.

(6) (a) Lan, A. J.; Li, K. H.; Wu, H. H.; Olson, D. H.; Emge, T. J.; Ki, W.; Hong, M. C.; Li, J. Angew. Chem., Int. Ed. 2009, 48, 2334–2338.
(b) Gole, B.; Bar, A. K.; Mukherjee, P. S. Chem. Commun. 2011, 47, 12137–12139. (c) Pramanik, S.; Zheng, C.; Zhang, X.; Emge, T. J.; Li, J. J. Am. Chem. Soc. 2011, 133, 4153–4155. (d) Peng, Y.; Zhang, A. J.; Dong, M.; Wang, Y. W. Chem. Commun. 2011, 47, 4505–4507.
(e) Gong, Y. N.; Jiang, L.; Lu, T. B. Chem. Commun. 2013, 49, 11113–11115. (f) Nagarkar, S. S.; Joarder, B.; Chaudhari, A. K.; Mukherjee, S.; Ghosh, S. K. Angew. Chem., Int. Ed. 2013, 52, 2881–2885. (g) Xue, Y. S.; He, Y. B.; Zhou, L.; Chen, F. J.; Xu, Y.; Du, H. B.; You, X. Z.; Chen, B. L. J. Mater. Chem. A 2013, 1, 4525–4530.

(7) Gong, Y. N.; Meng, M.; Zhong, D. C.; Huang, Y. L.; Jiang, L.; Lu, T. B. *Chem. Commun.* **2012**, *48*, 12002–12004.

(8) (a) Yang, E. C.; Liu, Z. Y.; Wang, X. G.; Batten, S. R.; Zhao, X. J. *CrystEngComm* **2008**, *10*, 1140–1143. (b) Gong, Y. N.; Lu, T. B. *Chem. Commun.* **2013**, *49*, 7711–7713.

(9) (a) An, J.; Rosi, N. L. J. Am. Chem. Soc. 2010, 132, 5578-5579.
(b) Zheng, S. T.; Wu, T.; Irfanoglu, B.; Zuo, F.; Feng, P. Y.; Bu, X. H. Angew. Chem., Int. Ed. 2011, 50, 8034-8037.

(10) Spek, A. L. PLATON 99: A Multipurpose Crystallographic Tool; Utrecht University: Utrecht, The Netherlands, 1999.

(11) Bae, Y. S.; Mulfort, K. L.; Frost, H.; Ryan, P.; Punnathanam, S.; Broadbelt, L. J.; Hupp, J. T.; Snurr, R. Q. *Langmuir* **2008**, *24*, 8592–8598.

(12) Huang, Y. L.; Gong, Y. N.; Jiang, L.; Lu, T. B. Chem. Commun. 2013, 49, 1753–1755.

(13) Sun, L. B.; Xing, H. Z.; Xu, J.; Liang, Z. Q.; Yu, J. H.; Xu, R. R. Dalton Trans. 2013, 42, 5508–5513.

(14) Zhang, C. Y.; Che, Y. K.; Zhang, Z. X.; Yang, X. M.; Zang, L. Chem. Commun. **2011**, 47, 2336–2338.